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Abstract. The interactions of conjugate circularly polarized vibrational solitons in gyrotropic
molecular crystals are investigated. Their dynamics is governed by a system of coupled non-linear
Schrödinger equations which are solved analytically and numerically. Depending on the initial
conditions and the material parameters, different evolutionary patterns are obtained corresponding
to unbound or bound one- and two-soliton solutions. For structures with C4 and D4 symmetries
and weak gyrotropic properties, an intensive energy exchange between the modes takes place and
under certain conditions the fast mode becomes unstable.

1. Introduction

Solitary waves (solitons) formed of interacting quasiparticles in condensed media have been
widely investigated. They have been predicted and studied for vibron [1–5], exciton [6–8],
polariton [9–12] and magnon [13–15] excitations. Almost all investigations to date refer to
solitons associated with non-degenerate excitations such as those with polarization normal to
the optical axis in uniaxial gyrotropic crystals. A challenging task is the study of solitons
formed of degenerate excitations in gyrotropic crystals. The latter exhibit natural optical
activity expressed in general by a different response to right and left circularly polarized light.
It is manifested in optical rotation and circular dichroism, light scattering, luminescence and
fluorescence (for comprehensive reviews of molecular optical activity, see e.g. [16, 17]).

Traditionally, optical activity has been studied in the visible and the near-ultraviolet regions
where it is associated with electronic transitions. Vibrational optical activity, studied more
recently, is related to transitions between the vibrational levels of the molecules and provides
valuable information for biochemistry and biophysics. In [18] a theory of the non-linear
dynamics of intramolecular vibrations in uniaxial gyrotropic crystals was developed. The
transverse normal modes propagating along the optical axis are circularly polarized. The
chirality of the structure yields different dispersion laws and hence different phase and group
velocities for the left- and right-handed modes. The anharmonicity of the vibrations leads in
general to three types of non-linear interaction between the conjugate circular modes. The first
one is between excitations with the same handedness and governs the formation of isolated
partial solitons. The other two describe non-linear cross-interactions between the modes.
One is elastic and conserves the energy of each mode, while the other is inelastic and allows
energy exchange between the modes. Reference [18] focuses on the effects associated with
the elastic cross-interaction which is present in chiral structures with arbitrary axial symmetry.
It is shown that under certain conditions it can lead to coupling of the conjugate partial pulses
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into one- or two-soliton bound states. The present paper extends the investigations of [18]
by taking into account the inelastic cross-interaction between the partial solitons, which is
present in gyrotropic crystals belonging to point group C4 or D4. This interaction can influence
considerably the bound soliton states as well as the processes of scattering of partial solitons.

The organization of the paper is as follows. In section 2 the non-linear equations of motion
which govern the dynamics of conjugate circular solitons are derived. In the semi-continuum
limit they transform into a system of coupled non-linear Schrödinger equations. The role of
the elastic non-linear cross-interaction for the partial soliton dynamics is reviewed in section 3.
Analytical solutions for the unbound and bound one-soliton states are presented, as well as
numerical solutions corresponding to bound two-soliton states. A qualitative explanation
of the observed effects is given. The role of the inelastic (exchange) cross-interaction for the
evolution of conjugate partial pulses is studied in detail in section 4. An approximate analytical
bound soliton solution is obtained in the case of weak exchange interaction. The evolution and
instabilities of the partial pulses for strong inelastic interaction are studied numerically. The
main results of the paper are summarized in section 5.

2. General consideration

In the present paper we shall investigate the dynamics and interactions of solitons associated
with circular vibrations propagating along the optical axis in uniaxial gyrotropic crystals.
Biaxial crystals and uniaxial crystals in directions different from the optical axis exhibit linear
birefringence and linear dichroism which are 2–3 orders of magnitude stronger than the circular
dichroism and can obscure the effects of the latter. Thus the crystal classes which favour the
observation of circular dichroism are the trigonal classes 32 and 3, the tetragonal classes 4, 4̄
and 422, the hexagonal classes 6 and 622, and the cubic classes 23 and 432. For wave vectors
k = 0 the normal modes transform within the irreducible representations of the point group
of the crystal. The optical phonons are then either non-degenerate (A mode) with polarization
along the optical axis, or doubly degenerate (E mode), polarized perpendicularly to the optical
axis. For k �= 0 the degeneracy is split linearly in kz where z is directed along the optical axis
[19]. The dipole and multipole moments associated with the two modes are also different.

From a microscopic point of view the optical activity is related to the chirality
(dissymmetry) of the structure which excludes improper rotation axes, i.e. centres of inversion,
reflection planes and rotation–reflection axes. Thus optical activity in crystals may derive from
inherent molecular chirality and/or from chirality due to the arrangements of the molecules
along a helix within the unit cell. In the first case the molecules are essentially three-
dimensional and dissymmetric (with an internal chiral structure), and their dimensions cannot
be neglected compared to the wavelength of light. In the second case the molecules can be
achiral and the gyrotropy arises from the crystalline structure. The microscopic theory of both
types of optical activity in molecular crystals in the excitonic part of the spectrum has been
developed in [20]. Vibrational circular dichroism of the second type has been observed in [21].

In the present paper we shall consider for simplicity gyrotropic crystals with one molecule
per unit cell where the gyrotropy originates from the chiral structure of the molecules. With
some effort the present investigation can be extended to crystals with more than one molecule
per unit cell and to chiral polymers. We shall also consider the case where the symmetry point
group of the molecules coincides with that of the crystal.

Let qr and ql be two normal modes of E-mode optical phonons with k = 0 which transform
as (x + iy) and (x − iy). Following [22] we can introduce creation and annihilation operators
for right (A†

n, An) and left (B†
n, Bn) circular vibrations in molecule n, which are related to the
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corresponding normal coordinates and conjugate momenta through

qrn = (A†
n + Bn)/

√
2 qln = (B†

n + An)/
√

2

prn = (B†
n − An)/

√
2 pln = (A†

n − Bn)/
√

2.
(1)

The operators An and Bn obey the usual boson commutation rules:

[An,A
†
m] = [Bn, B

†
m] = δn,m

[An,B
†
m] = [An,Bm] = [An,Am] = [Bn, Bm] = 0.

(2)

The energy operator of molecule n in the harmonic approximation is

Hn = h̄ω0(A
†
nAn + B†

nBn) (3)

whereω0 is the frequency of the degenerate modes. The intramolecular vibrations in crystals are
usually strongly localized and possess narrow energy bands. They can be described well within
the Heitler–London approximation [20]. Thus the resonant interaction between molecules n
and m associated with exchange of left and right circular vibrations can be written as

Hnm = Mr
nm(A

†
nAm) +Ml

nm(B
†
nBm). (4)

The matrix elements Mr
nm and Ml

nm in general do not coincide. They include parts
corresponding to the electric dipole–electric dipole intermolecular interaction, which are real,
symmetric and equal for right and left circular excitations (ReMr

nm = ReMr
mn = ReMl

nm =
ReMl

mn = Ms
nm). In chiral systems, however, there are also non-vanishing parts of the

matrix elements corresponding to the electric dipole–magnetic dipole interaction and the
electric dipole–electric quadrupole interaction. These parts are imaginary, antisymmetric and
change sign for excitations with different handedness (ImMr

nm = −ImMr
mn = ImMl

mn =
−ImMl

nm = Mas
nm) [20, 16]. Thus the intermolecular interaction operator can be rearranged as

Hnm = Ms
nm(A

†
nAm + B†

nBm) + iMas
nm(A

†
nAm − B†

nBm). (5)

The difference between the intermolecular interactions for left and right circular excitations
is the cause of the optical activity within our model. The magnetic dipole and the
electric quadrupole moments are much smaller than the electric dipole moment, and hence
|Mas

nm/M
s
nm| � 1. Thus the gyrotropic effects are in general weaker than the dispersion effects

associated withMs
nm; however, for short pulses and large distances they can cause considerable

changes in the evolutionary patterns.
The anharmonicity of the intramolecular vibrations is usually weak and in the non-linear

part of the Hamiltonian we can keep only the phonon-conserving terms [23]. The lowest-order
terms which obey this condition are quartic. In order to write them down explicitly, we have
to take into account the axial symmetry of the system. The normal coordinates qrn and qln
transform as the basis functions of a pair of complex-conjugate representations of the symmetry
point group of the crystal. Thus the product qrnqln and all of its powers are invariant in all
point groups with axial symmetry. For this reason, the anharmonic part of the Hamiltonian
for uniaxial gyrotropic crystals will always contain quartic terms of the type q2

rnq
2
ln. With the

help of (1) this gives

Hanh = (g1/2)
∑
n

(A†
nA

†
nAnAn + B†

nB
†
nBnBn) + g2

∑
n

A†
nB

†
nAnBn. (6)

It is important to note that this anharmonic part of the Hamiltonian commutes with the number-
of-particles operators of each mode

∑
n A

†
nAn and

∑
n B

†
nBn. The first term in (6) describes

non-linear interaction between quasiparticles of the same type. The second term in (6) describes
an elastic interaction (scattering) of conjugate quasiparticles in which their individual numbers
are conserved.
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However, it is not difficult to see that in crystals belonging to the point groups C4 or D4,
anharmonic terms of the type q4

rn and q4
ln are also invariant. With the help of (1) they yield the

following anharmonic Hamiltonian:

H ′
anh = (g3/2)

∑
n

(A†
nA

†
nBnBn + B†

nB
†
nAnAn). (7)

This Hamiltonian commutes with the operator of the total number of particles
∑

n(A
†
nAn +

B†
nBn) but not with the individual number-of-particles operators. Thus (7) describes non-linear

cross-interactions in which quasiparticles of one type are transformed into quasiparticles of
the other type and vice versa. These interactions allow energy exchange between the two
conjugate modes and will be called inelastic.

The total Hamiltonian for circular vibrations in gyrotropic crystals belonging to point
groups C4 or D4 thus becomes

H = h̄ω0

∑
n

(A†
nAn + B†

nBn) +
∑
n,m

[(Ms
nm + iMas

nm)A
†
nAm + (Ms

nm − iMas
nm)B

†
nBm]

+ (g1/2)
∑
n

(A†
nA

†
nAnAn + B†

nB
†
nBnBn) + g2

∑
n

A†
nB

†
nAnBn

+ (g3/2)
∑
n

(A†
nA

†
nBnBn + B†

nB
†
nAnAn). (8)

Further on we shall consider a one-dimensional case with nearest-neighbour interaction.
The non-vanishing matrix elements of the intermolecular interaction operator can be
represented as

Ms
nn+1 = Ms

n+1n = M

Mas
nn+1 = −Mas

n+1n = −γ M, γ real.
(9)

The equations of motion for the operators An and Bn are

ih̄
∂An

∂t
= h̄ω0An +M(An+1 + An−1)− iγ (An+1 − An−1)

+ g1A
†
nAnAn + g2B

†
nBnAn + g3A

†
nBnBn

ih̄
∂Bn

∂t
= h̄ω0Bn +M(Bn+1 + Bn−1) + iγ (Bn+1 − Bn−1)

+ g1B
†
nBnBn + g2A

†
nAnBn + g3B

†
nAnAn.

(10)

Averaging (10) with a wave function involving on-site coherent states:

|�(t)〉 =
∏
n

|αn(t)〉 ⊗ |βn(t)〉

An|αn(t)〉 = αn(t)|αn(t)〉 Bn|βn(t)〉 = βn(t)|βn(t)〉
(11)

we obtain the following system of coupled non-linear equations for the complex amplitudes
αn(t) and βn(t):

ih̄
∂αn

∂t
= h̄ω0αn +M(αn+1 + αn−1)− iγ (αn+1 − αn−1) + (g1|αn|2 + g2|βn|2)αn + g3α

∗
nβ

2
n

ih̄
∂βn

∂t
= h̄ω0βn +M(βn+1 + βn−1) + iγ (βn+1 − βn−1) + (g1|βn|2 + g2|αn|2)βn + g3β

∗
nα

2
n.

(12)

The soliton dynamics is determined completely by equations (12) which have been solved
numerically. We have considered wide solitons (L � 1) for which discreteness effects are
negligible and we have used periodic boundary conditions. Discreteness effects for narrow
solitons have been analysed explicitly in [7].



Soliton interactions in gyrotropic crystals 10433

An analytical solution of (12) in the case of weak anharmonicity and long pulses can be
sought in the form of amplitude-modulated waves with slowly varying envelopes:

αn(t) = ei(k1n−ω1t)ϕn(t)

βn(t) = ei(k2n−ω2t)ψn(t)
(13)

where k1,2 and ω1,2 are the wavenumbers and the frequencies of the carrier waves (the lattice
constant equals unity). Within the semi-discrete approach [24] the system (12) reduces to

ih̄
∂ϕ

∂t
= (ε1 − h̄ω1)ϕ + b1

∂2ϕ

∂x2
− 2i

∂b1

∂k1

∂ϕ

∂x
+ (g1ϕ

2 + g2ψ
2)ϕ + g3e2i(%k x−%ω t)ψ2ϕ

ih̄
∂ψ

∂t
= (ε2 − h̄ω2)ψ + b2

∂2ψ

∂x2
− 2i

∂b2

∂k2

∂ψ

∂x
+ (g1ψ

2 + g2ϕ
2)ψ + g3e−2i(%k x−%ω t)ϕ2ψ

(14)

where

ε1,2 = h̄ω0 + 2b1,2 b1,2 = M cos k1,2 ± γ sin k1,2

%k = k2 − k1 %ω = ω2 − ω1.
(15)

3. Effects of the elastic cross-interaction

Without the cross-interaction terms (g2 = g3 = 0), the system (14) decomposes into two
uncoupled non-linear Schrödinger equations for the conjugate circular amplitudes. They
possess the following bright-soliton solutions:

ϕ(x, t) = ϕ0 sech
x − v1t

L1
ψ(x, t) = ψ0 sech

x − v2t

L2

ϕ2
0 = 2b1

gL2
1

ψ2
0 = 2b2

gL2
2

h̄ω1 = ε1 +
b1

L2
1

h̄ω2 = ε2 +
b2

L2
2

b1 = M cos k + γ sin k b2 = M cos k − γ sin k

v1 = −2h̄−1(M sin k − γ cos k) v2 = −2h̄−1(M sin k + γ cos k)

(16)

where ϕ0, ψ0; L1, L2; and v1, v2 are the amplitudes, widths and velocities of the two solitons.
This solution describes non-interacting conjugate pulses, propagating with equal carrier wave-
numbers and different velocities and shapes (figure 1).

|αn|
2

|βn|
2

Figure 1. Evolution of non-interacting partial pulses with
k1 = k2 = 0.6, M = −0.1 and γ = 0.01. The length is
measured in lattice constants and the time in ω−1

0 .
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When an attractive elastic non-linear cross-interaction between the pulses exists (g2 < 0,
g3 = 0), the system (14) possesses an exact analytical solution of the form:

ϕ(x, t) = ϕ0 sech
x − vt

L

ψ(x, t) = ψ0 sech
x − vt

L

(17)

with the following relations between the soliton parameters:

%k = 2 arctan(−γ /M) b1 = b2 = b ε1 = ε2 = ε

ω1 = ω2 = h̄−1

(
ε +

b

L2

)
ϕ2

0 = ψ2
0 = 2b

L2(g1 + g2)

v = −2h̄−1(M sin k1 − γ cos k1) = −2h̄−1(M sin k2 + γ cos k2).

(18)

The solution (17), (18) describes a soliton bound state which consists of partial pulses with
identical shapes and velocities and different carrier wavenumbers. Depending on the values
of the parameters and the initial amplitudes, a linearly polarized pulse can evolve to either an
unbound or a bound one- or two-soliton state for the partial pulses.

The evolutionary pattern is controlled by the balance between the kinetic energy of the
relative motion of the pulses

Ukin = −2γ 2 cos k

M
Ne (19)

and the potential energy of their elastic interaction

Upot = 2

3
g2ϕ

2
0Ne (20)

where

Ne =
∫ ∞

−∞
ϕ2(x, t) dx =

∫ ∞

−∞
ψ2(x, t) dx (21)

gives the numbers of excited vibrational quanta of each circular mode which we have considered
equal. This corresponds to the physically important case of a linearly polarized initial pulse
whose evolution we have studied numerically. The condition for bound soliton states is

R =
∣∣∣∣UkinUpot

∣∣∣∣ =
∣∣∣∣3γ 2 cos k

g2Mϕ
2
0

∣∣∣∣ < 1. (22)

In the case of strong gyrotropy and weak elastic cross-interaction, when the kinetic energy
dominates over the potential one, an initial linearly polarized pulse decomposes into two
circularly polarized pulses propagating with different velocities (16). In the opposite case,
when the potential energy dominates (R < 1), the partial pulses are locked together to form
a soliton bound state (figure 2). The wavenumbers of the pulses are modified according to
the analytical solution (18) and the energy in each mode is conserved. The coupling process
is accompanied by amplitude and position oscillations of the partial pulses, and while the
amplitude oscillations seem to decay over time, the position ones which are of the order of a
few lattice constants are long-lasting. Similar breather-like behaviour of the coupled solution
has been obtained in [25] for solitons in birefringent optical fibres.

In the intermediate region (R ∼ 1), where the kinetic energy nearly equals the potential
one, the initial pulse decomposes into two pairs of coupled partial pulses (figure 3), which
can be classified as a two-soliton bound state. This process can be explained qualitatively
in the following way: the potential energy in this case is not sufficient for the coupling of
the pulses into one-soliton bound states and a walk-off effect takes place. However, due to
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n

0

4000

8000

t

| α
n|

2

-40 0 40

n

0

4000

8000

t

| β
n|

2

Figure 2. Evolution of interacting partial pulses with initial k1 =
k2 = 0.6 into a bound one-soliton solution forM = −0.1, γ = 0.01
and g1 = g2 = −0.005. The frame of reference is moving with
velocity v.

-100 -50 0 50 100

n

0

4000

8000

t

| α
n|

2

-100 -50 0 50 100

n

0

4000

8000

t

| β
n|

2 

Figure 3. Evolution of the initial partial pulses into
a two-soliton bound state for γ = 0.015. All other
parameters are the same as in figure 2.

the non-linear cross-interaction, a portion of the energy splits off each partial pulse in the
form of small-amplitude soliton which is locked to the conjugate large-amplitude soliton. The
relative velocity of the two pairs is smaller than that of the uncoupled solution. Weaker initial
amplitudes lead to weaker coupling and a strongly asymmetric two-soliton bound state and for
R � 1 the evolution corresponds to the uncoupled one-soliton solution.

We have investigated the stability of the partial solitons against collision in the presence
of an attractive elastic cross-interaction. For g2 = g1 and g3 = 0 the system (14) is completely
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integrable [26, 27] and the solitons emerge from the collision process unchanged except for a
phase shift. For |g2| > |g1| the integrability of (14) is destroyed and a two-soliton bound state
is formed after the collision as shown in figure 4 (g2 = −0.02, g1 = −0.005). The evolution
is similar to the one in figure 3; however, a larger potential energy is necessary in this case to
overcome the relative stability of the uncoupled partial pulses.

| α
n|

2

| βn|
2

Figure 4. Formation of a two-soliton bound state in a collision process with γ = 0.01, g1 = −0.005
and g2 = −0.02.

4. Effects of the exchange cross-interaction

As mentioned above, in crystals belonging to the point groups C4 or D4 an additional non-
linear interaction between the conjugate normal modes exists, which allows energy exchange
between the modes. Vibrational circular dichroism in α-NiSO4·6H2O and α-ZnSeO4·6H2O
crystals, belonging to the point group D4, has been observed in [21], so in principle the soliton
interactions studied in the present section can also be observed in such crystals. As the non-
linear interactions between the pulses act only while substantial parts of them overlap, it can
be expected that the exchange cross-interaction will considerably affect the bound soliton
states but be less important for the unbound ones. This interaction yields a spatially periodic
non-linear potential with a period π/%k, which leads to amplitude modulation and energy
exchange between the partial solitons. In the case of a weak-exchange cross-interaction
(|g3| � |g1|, |g2|), we can seek an approximate solution of equations (14) in the form

ϕ(x, t) = ϕ0(1 + ϕ1(x, t)) sech
x − vt

L

ψ(x, t) = ψ0(1 + ψ1(x, t)) sech
x − vt

L

(23)
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where ϕ0 and ψ0 are the bound soliton solutions (18) and ϕ1 and ψ1 are small compared to
unity. Substituting (23) into (14) and keeping only terms linear in ϕ1 and ψ1, the following
solution can be obtained:

ϕ1(x, t) = g3

b1
L2ψ2

0 cos(2%k x) sech2 x − vt

L

ψ1(x, t) = g3

b2
L2ϕ2

0 cos(2%k x) sech2 x − vt

L
.

(24)

In the case of strong gyrotropy, the modulation length is short compared with the soliton
width and the spatially oscillating cross-interaction terms are averaged over the soliton period.
The coupled soliton solution is not affected by the exchange interaction and remains stable.

Much more interesting and of physical importance is the case of weak gyrotropy. The
modulation length in this case is longer than the soliton width and this leads to periodic
oscillations of the solitons’ amplitudes and intensive energy exchange between the pulses.
Figure 5 shows the evolution of a pair of conjugate partial pulses with γ = 0.001, %k = 0.02
and equal amplitudes. Strong oscillations of the amplitudes of the partial pulses are observed
in the initial moments. After some time, the fast mode (the one with larger phase velocity)
decays, transferring most of its energy to the slower one. When only a fast-mode partial pulse
is launched, it transfers most of its energy into a slow-mode soliton and decays. When a
slow-mode pulse is launched it remains practically stable. Thus in all cases of N = 1 initial
amplitudes, the fast partial pulse becomes unstable over time and decays, while the slow one
remains stable.

| αn|
2

| α
n|

2

| βn|
2 

| βn|
2 

Figure 5. Instability of the fast mode due to the exchange interaction in the case of weak gyrotropy
(γ = 0.001) when two conjugate pulses are launched with g1 = g2 = g3 = −0.005, k1 = 0.20
and k2 = 0.22.

A different picture is observed in the case of pulses with larger initial amplitudes cor-
responding toN = 2 solutions. When a two-soliton fast pulse is launched (figure 6), it quickly
excites the conjugate partial soliton and both modes remain stable and with equal amplitudes
over large distances. Similar evolutionary patterns are observed when an N = 2 slow partial
pulse is launched, or when both modes are excited with two-soliton amplitudes. In all cases of
N = 2 amplitudes, strong oscillations are observed in the initial moments and a considerable
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α
n|

2

| α
n|

2

| β
n|

2 | β
n|

2

Figure 6. Redistribution of the energy and stability of the soliton bound state when an N = 2
fast-mode pulse is launched. All other parameters are the same as in figure 5.

compression of the pulses takes place. Similar effects with interchanged space and time
domains have been obtained in [25, 28–31] for the interaction of linearly polarized solitons in
birefringent optical fibres and for elliptically polarized solitons in gyrotropic materials [32].

We investigated also the stability of the partial solitons against collisions in the presence of
an exchange cross-interaction. For weaker interaction (|g3| ∼ |g1|, |g2|), both solitons emerge
from the collision process with only minor distortions. For stronger interaction however, the
faster soliton transfers most of its energy to the slower one during the collision and decays
(figure 7). To our knowledge this is the first demonstration of such an instability.

5. Conclusions

The dynamics and the stability of conjugate circularly polarized envelope solitons in gyro-
tropic molecular crystals are governed by the parameters of the initial pulses (amplitudes,
widths, carrier wavenumbers) and the material parameters which determine the dispersion and
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| α
n|

2

| β
n|

2

Figure 7. Instability of the faster partial soliton in a collision with a slower one in the case of strong
exchange interaction. γ = 0.01, g1 = g2 = −0.005, g3 = −0.02 and k1 = k2 = 0.6.

the interactions of the partial waves. A group-theoretical analysis yields the allowed non-
linear terms in the Hamiltonian for the different point groups of symmetry. The presence of
gyrotropy tends to separate the pulses, while an attractive elastic interaction tends to keep them
together. The balance between the kinetic energy of the relative motion of the solitons and the
potential energy of their elastic interaction yields the possible evolutionary patterns—coupled
or uncoupled one-soliton solutions when stronger inequalities hold, and coupled two-soliton
solutions in the intermediate region where the kinetic energy nearly equals the potential one.
Our results show that for weak gyrotropy and strong attraction, an initial linearly polarized
pulse will propagate as a single pulse with a rotating plane of polarization, while in the opposite
case it will decompose into a pair of conjugate circularly polarized pulses propagating with
different velocities. In the intermediate case the initial pulse will decompose into a pair of
elliptically polarized pulses with opposite handedness, walking off. Bound soliton states can
also be formed in collision processes in the case of strong attraction.

The inelastic (exchange) cross-interaction, present in systems with C4 and D4 symmetries,
is crucial for the coupled soliton solutions in the physically important case of weak gyrotropy.
It leads to an instability of the fast mode for N = 1 initial conditions. For N = 2 initial
conditions, both modes remain stable and the energy is redistributed equally between them. A
strong exchange cross-interaction can also lead to an instability and decay of the faster soliton
in a collision with a slower soliton with opposite handedness.
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